Мы используем файлы cookie.
Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.

Speckle-Tracking эхокардиография – новая техника оценки функции миокарда


Speckle-tracking эхокардиография – недавно появившаяся количественная ультразвуковая методика точной оценки функции миокарда путем анализа движения спеклов, выявленных на обычных 2-мерных сонограммах.
Speckle-tracking эхокардиография – недавно появившаяся количественная ультразвуковая методика точной оценки функции миокарда путем анализа движения спеклов, выявленных на обычных 2-мерных сонограммах.


АВТОРЫ: Sergio Mondillo, MD, Maurizio Galderisi, MD, Donato Mele, MD, Matteo Cameli, MD, Vincenzo Schiano Lomoriello, MD, Valerio Zacà, MD, Piercarlo Ballo, MD, Antonello D’Andrea, MD, Denisa Muraru, MD, Mariangela Losi, MD, Eustachio Agricola, MD, Arcangelo D’Errico, MD, Simona Buralli, MD, Susanna Sciomer, MD, Stefano Nistri, MD, Luigi Badano, MD

Speckle-tracking эхокардиография – недавно появившаяся количественная ультразвуковая методика точной оценки функции миокарда путем анализа движения спеклов, выявленных на обычных 2-мерных сонограммах. Она предоставляет данные о недоплеровской, угол-независимой и объективной количественной деформации миокарда и систолической и диастолической динамики левого желудочка. При отслеживании перемещения спеклов во время сердечного цикла, саму деформацию и её скорость можно быстро измерить после соответствующего проведенного исследования. Данные о технических особенностях выполнения исследования, точности и клиническом применении speckle-tracking эхокардиографии появляются с высокой скоростью. Этот обзор описывает основные понятия speckle-tracking эхокардиографии, иллюстрирует то, как получить измерения деформации с помощью этой техники, и обсуждает их применение и дальнейшее клиническое развитие.

Speckle-tracking эхокардиография – новый, неинвазивный ультразвуковой метод визуализации, который позволяет объективно и количественно оценить глобальную и регионарную функцию миокарда независимо от угла атаки и от поступательных движений сердца. Speckle-tracking эхокардиография основана на анализе пространственного смещения (именуемый отслеживанием или трекингом) спеклов (которые определяются в виде пятен, точек в серошкальном изображении, генерируемых взаимодействием между ультразвуковым лучом и волокнами миокарда) при обычной 2-мерной сонографии. До введения этой сложной эхокардиографической техники, только магнитно-резонансная томография (МРТ) с мечеными молекулами позволяла выполнить точный анализ нескольких компонентов деформации, которые характеризуют динамику миокарда. Хотя магнитно-резонансная томография с мечеными молекулами считается золотым стандартом в этой области исследования, его рутинное использование ограничено высокой стоимостью, малой доступностью, относительной сложностью получения изображений и длительным анализом данных.

Отслеживая перемещения спеклов во время сердечного цикла, speckle-tracking эхокардиография позволяет полуавтоматически обрабатывать данные деформации миокарда в 3 пространственных направлениях: продольном, радиальном и циркулярном. Кроме того, speckle-tracking эхокардиография проводит оценку возникновения, направления, и скорости вращения левого желудочка (ЛЖ). Полуавтоматический характер speckle-tracking эхокардиографии гарантирует хорошую внутринаблюдательную и межнаблюдательную воспроизводимость. Несмотря на то, что этот новый метод был введен исключительно для анализа функции ЛЖ, несколько исследований недавно расширили поле его применения и в других камерах сердца, например, в левом предсердии (ЛП).

Этот обзор объясняет основные понятия speckle-tracking эхокардиографии, является практическим руководством по получению и интерпретации данных. В нем обсуждаются особенности клинического применения этих новых эхокардиографических параметров, которые в последнее время стали предметом большого интереса для клиницистов.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ АСПЕКТЫ

Термин speckle-tracking означает, что этот метод основан на анализе спеклов во время сердечного цикла. Единичные спеклы сливаются в функциональные блоки (ядра), что, в свою очередь, однозначно идентифицируются, характеризуя специфическое распределение спеклов. В результате, каждое ядро представляет собой вид ультразвукового отпечатка, который отслеживается с помощью программного обеспечения в течение всего сердечного цикла. Путем анализа движения каждого ядра, в режиме двухмерного изображения в серой шкале, система, без использования доплеровского сигнала, может вычислить смещение, частоту смещения (скорость), деформацию, а также скорость деформации (частоту деформации) выбранных сегментов миокарда и вращение ЛЖ.

В соответствии с указаниями, полученными из литературы с целью снижения случайного шума, каждый образец для speckle-tracking эхокардиографического анализа, должен быть получен путем усреднения, по меньшей мере, 3 последовательных сердечных циклов, установив частоту кадров стандартного двухмерного изображения от 60 до 110 кадров в секунду.

Учитывая тесную зависимость speckle-tracking эхокардиографии от анализа деформации одного сердечного цикла, её ограничением является невозможность проведения исследования у пациентов с несинусовым ритмом.

Эхокардиографические данные, полученные при speckle-tracking исследовании, недавно были сравнены с сономикрометрией и МРТ с мечеными молекулами, и при этом показали высокую возможность их получения и воспроизводимость. Значительные потенциальные ограничения этой новой методики заключаются в её строгой зависимости от частоты кадров и качества двухмерных изображений, что является необходимым условием для получения оптимального определения границы эндокарда.

ТЕРМИНОЛОГИЯ И ОПРЕДЕЛЕНИЯ

Краткая информация о терминологии, которая используется при этой эхокардиографической технике и описанная в тексте, приведена в Таблице 1.

Таблица 1. Speckle-tracking эхокардиографическая терминология

Термин

Определение

Напряжение Strain

Деформации миокарда

Скорость деформации Strain rate

Скорость деформации миокарда

Продольная деформация Longitudinal strain

Миокардиальная деформация, направленная от основания к верхушке сердца

Радиальная деформация Radial strain

Деформации миокарда, направленная радиально к центру полости левого желудочка

Циркулярная деформации Circumferential strain

Сокращение левого желудочка вдоль циркулярного периметра, наблюдаемое в плоскости короткой оси

Скручивание Twisting

Чистая разница между средним верхушечным и базальным вращением в фазе систолы

Кручение (торсия) Torsion

Скручивание ЛЖ нормализованное к расстоянию основание-верхушка

Раскручивание Untwisting

Чистая разница между средним верхушечным и базальным вращением в фазе диастолы

Частота раскручивания Untwisting rate

Скорость раскручивания

Bull’s-eye (Мишень)

Значение деформации топографического изображения для всех 17 сегментов

Постсистолический индекс Post-systolic index

Процент от значения постсистолической деформации по сравнению с максимальным пиком деформации

Напряжение ― Strain

Напряжение представляет собой измерение, которое оценивает степень деформации анализируемого сегмента по отношению к его начальному размеру. Оно выражается в процентах. Уравнение напряжения (ε) состоит в следующем:

ε = L – L0/L0,

где L представляет собой длину объекта после деформации, а L0 – начальная длина объекта. По общепринятым условиям, в зависимости от направления деформации, при удлинении или утолщении, значение принимается как положительное, в то время как при укорочении или истончении значение принимается как отрицательное.

Скорость деформации (напряжения) ― Strain Rate

Скорость напряжения (ε ‘) представляет собой скорость деформации миокарда. Она выражается в секундах-1. Другими словами, если то же самое значение деформации достигается в два раза быстрее, значение скорости деформации будет в два раза выше. Экспериментальные исследования показали, что скорость деформации менее зависима от изменения нагрузки ЛЖ, чем сама деформация. Тем не менее, поскольку сигнал скорости деформации имеет больше шума и сложнее воспроизводится, большинство клинических исследований по-прежнему используют измерения деформации.

Продольная деформация (напряжение) ―  Longitudinal Strain

Продольная деформация представляет собой деформацию миокарда, направленную от основания до верхушки сердца. Во время систолы, желудочковые волокна миокарда укорачиваются с поступательным движением от основания к верхушке. Последующее сокращение расстояния между отдельными ядрами представлено негативными трендовыми кривыми (Рис. 1А).

Путем анализа продольной деформации в 4-камерной, 2-камерной и апикальной, вдоль длинной оси, плоскостях, могут быть получены как регионарные (относительно каждого из 17 сегментов ЛЖ), так и глобальные значения деформации (глобальная продольная деформация). Глобальная продольная деформация недавно была утверждена в качестве количественного показателя для оценки глобальной функции ЛЖ. Такие же измерения могут быть применены к speckle-tracking эхокардиографическому анализу продольной миокардиальной деформации левого предсердия и правого желудочка (ПЖ), при получении пиковой продольной предсердной деформации и продольной деформации ПЖ, соответственно.

Радиальная деформация ― Radial Strain

Радиальная деформация представляет собой деформацию миокарда в радиальном направлении, т.е. по направлению к центру полости ЛЖ, и таким образом отражая утолщение и истончение ЛЖ при движении во время сердечного цикла. Следовательно, во время систолы, учитывая прогрессирующее радиальное движение отдельных ядер, значения радиальной деформации представлены положительными кривыми (Рис. 1В). Значения радиальной деформации при speckle-tracking эхокардиографическом анализе получаются как в базальной, так и апикальной плоскостях короткой оси ЛЖ.

Рис. 1. Speckle-tracking эхокардиографический анализ деформации миокарда с указанием измерения продольной деформации (A), радиальной деформации (В)  и циркулярной деформации (С).
Рис. 1. Speckle-tracking эхокардиографический анализ деформации миокарда с указанием измерения продольной деформации (A), радиальной деформации (В) и циркулярной деформации (С).

Циркулярная деформация ― Circumferential strain

Циркулярная деформация представляет собой укорочение волокон миокарда ЛЖ по циркулярному периметру в плоскости короткой оси сердца (Рис. 1C). Следовательно, во время систолы, в связи с сокращением циркулярного расстояния спекл-до-спекл, измерения циркулярной деформации представлены в виде негативных кривых. Что касается продольной деформации, при использовании этого значения можно получить значение глобальной циркулярной деформации.

Скручивание и кручение ― Twisting and Torsion

До недавнего времени оценка скручивания ЛЖ была возможна только при помощи МРТ, но в настоящее время speckle-tracking эхокардиография стала новым перспективным инструментом для анализа скручивания ЛЖ. Скручивание левого желудочка – компонент нормального систолического сокращения, которое возникает от взаимного поворота верхушки и основания ЛЖ в течении систолы и представляет собой важный аспект сердечной биомеханики. Являясь внутренней физиологической характеристикой сердца, количественная оценка скручивания левого желудочка при speckle-tracking эхокардиографии базируется на основе анализа взаимного вращения верхушки и основания ЛЖ во время систолы. Скручивание левого желудочка рассчитывается как чистая разница среднего вращения между апикальным и базальным уровнями (Рис. 2). Кручение левого желудочка определяется как скручивание ЛЖ, нормализованное к расстоянию основание-верхушка.

Раскручивание ― Untwisting

Растущее внимание уделяется роли раскручивания в механике диастолического наполнения ЛЖ. Скорость раскручивания считается критическим начальным проявлением активного отдыха, что делает это измерение относящимся к исследованию диастолы и, главным образом, к изоволемической релаксации, потому что этот показатель имеет меньшую зависимость от нагрузки, по сравнению с другими диастолическими параметрами.

КАК ПОЛУЧИТЬ ПАРАМЕТРЫ ДЕФОРМАЦИИ

Получение изображения

Изображения для speckle-tracking эхокардиографического анализа, выполняемые в автономном режиме, получаются и записываются с использованием обычной двухмерной эхокардиографии в серой шкале во время задержки дыхания со стабильной электрокардиографической картиной. Необходимо соблюдать аккуратность для получения истинных апикальных изображений, а также изображений в плоскости короткой оси, используя стандартные анатомические ориентиры в каждой плоскости и избегать неправильных ракурсов анализируемых структур миокарда, что позволяет более надежно устанавливать границы эндокарда. Оптимальная частота кадров для получения двухмерного изображения устанавливается между 60 и 110 кадрами в секунду.

Рис. 2. Графические изображения динамики вращения левого желудочка, показывающие основание сердца (слева) и верхушку (справа). В нижней панели – диаграма измерения скручивания (twisting) левого желудочка (ЛЖ), что представлено в виде чистой разницы между средним апикальным и базальным вращением; кручение (torsion) левого желудочка рассчитывается путем нормализации параметра кручения левого желудочка “расстояние основание-верхушка”. AVC указывает на закрытие клапана аорты.
Рис. 2. Графические изображения динамики вращения левого желудочка, показывающие основание сердца (слева) и верхушку (справа). В нижней панели – диаграма измерения скручивания (twisting) левого желудочка (ЛЖ), что представлено в виде чистой разницы между средним апикальным и базальным вращением; кручение (torsion) левого желудочка рассчитывается путем нормализации параметра кручения левого желудочка “расстояние основание-верхушка”. AVC указывает на закрытие клапана аорты.

Эти настройки рекомендуется для того, чтобы объединить высокое временное разрешение с приемлемым пространственным разрешением, для повышения возможности покадровой методики трекинга (отслеживания). Рекомендуется начинать speckle-tracking эхокардиографический анализ с плоскости камеры сердца вдоль апикальной длинной оси для выбора кадра, соответствующего закрытию клапана аорты, которое является полезным опорным пунктом для последующего анализа. Верхушечная 4-х и 2-х камерная плоскость получения изображения необходима для анализа продольной деформации и пиковой продольной деформации предсердий (см. выше). Запись изображения в плоскости короткой оси сердца используется для определения радиальной деформации, циркулярной деформации и анализа вращения. Её проводят при стандартном парастернальном положении датчика в плоскости основания сердца и в более удаленных ― передней или переднебоковой позициях для апикальной плоскости. Для стандартизации получения изображения, базальную плоскость (основание сердца) определяют как плоскость, которая включает края митрального клапана, в то время как апикальная плоскость определяется дистальнее папиллярных мышц, проксимальнее уровня, на котором определяется конечно-систолическое закрытие полости ЛЖ. Особое внимание должно уделяться выполнению поперечного сечения ЛЖ, выполняя его как можно больше циркулярно.

Офлайн анализ

Записанные данные обрабатываются с помощью специфического acoustic-tracking программного обеспечения, как правило, доступного на специальных рабочих станциях, что позволяет выполнять автономный (после обследования) полуавтоматический анализ деформации на основе спеклов. Анализируемая поверхность эндокарда миокардиальных сегментов, определяется вручную у верхушки и / или в плоскости короткой оси сердца с помощью подхода “указал и щёлкнул, point-and-click”. Поверхность эпикарда помечается, а затем автоматически генерируется системой, создавая тем самым поле зрения. После ручной настройки ширины и формы поля зрения, программное обеспечение автоматически делит поле зрения на 6 сегментов, и в результате автоматически подсчитывается качество трекинга (tracking) для каждого сегмента и, либо применяется либо отвергается, с возможностью дальнейшей ручной коррекции. Сегменты, для которых нет возможности получения адекватного качественного изображения, отклоняются программным обеспечением и исключаются из анализа. Последнее: когда поле зрения оптимизировано, программное обеспечение генерирует кривые деформации для каждого выбранного миокардиального сегмента (Рис. 1). Из этих кривых, исследователь может получить значения регионального и глобального (путем усреднения значений, наблюдавшихся во всех сегментах) пиков и времени достижения пика.

Если продольный анализ деформации выполняется во всех 3 апикальных плоскостях, программное обеспечение автоматически генерирует топографическое представление всех 17 проанализированных сегментов (bull’s eye ― мишень; Рис. 3А). С помощью простого ввода оператор может также получить параметры времени достижения пика продольной деформации и постсистолический индекс (например, процент постсистолического значения деформации по сравнению с максимальным пиком деформации оцениваемого сегмента) bull’s eye ― мишень (Рис. 3В), которые оказались полезными в предварительных исследованиях для анализа и выявления потенциальной ишемии или зон миокардиальной диссинхронии.

Рис. 3. Топографическое представление (мишень ― bull’s-eye) различных измерений деформации. А ― представлена продольная деформация (слева) и время до пика продольной деформации (справа) у пациента с тяжелым стенозом левой передней нисходящей артерии. Обратите внимание на хроматическую индивидуализацию зоны ишемии (слева), также показана задержка сокращения (красная зона с сокращением задержки 286 мс; справа). B ― измерение постсистолического индекса при speckle-tracking эхокардиографии в начале исследования (слева) и при физической нагрузке (50 Вт; справа) у пациента, подвергающегося эхокардиографии с физической нагрузкой. Обратите внимание на ухудшение задержки сокращения ЛЖ в переднебоковой части. После коронарной ангиографии выявлена патология левой коронарной и левой нисходящей артерий сердца. ANT указывает на передний; ANT_SEPT ― переднеперегородочный; INF ― нижний; LAT ― боковой и POST ― задний.
Рис. 3. Топографическое представление (мишень ― bull’s-eye) различных измерений деформации. А ― представлена продольная деформация (слева) и время до пика продольной деформации (справа) у пациента с тяжелым стенозом левой передней нисходящей артерии. Обратите внимание на хроматическую индивидуализацию зоны ишемии (слева), также показана задержка сокращения (красная зона с сокращением задержки 286 мс; справа). B ― измерение постсистолического индекса при speckle-tracking эхокардиографии в начале исследования (слева) и при физической нагрузке (50 Вт; справа) у пациента, подвергающегося эхокардиографии с физической нагрузкой. Обратите внимание на ухудшение задержки сокращения ЛЖ в переднебоковой части. После коронарной ангиографии выявлена патология левой коронарной и левой нисходящей артерий сердца. ANT указывает на передний; ANT_SEPT ― переднеперегородочный; INF ― нижний; LAT ― боковой и POST ― задний.

КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ

В общем, помимо традиционных эхокардиографических методов, speckle-tracking эхокардиография позволяет провести беспрецедентную углубленную оценку систолической и диастолической динамики миокарда в широком диапазоне физиологических и патологических состояний. Например, существует не только хорошая корреляция между продольной деформацией и фракцией выброса левого желудочка (ФВЛЖ), как было показано в ряде исследований, но, кроме того, продольная деформация обеспечивает количественный анализ миокардиальной деформации каждого сегмента ЛЖ, что позволяет обнаруживать начальные проявления систолической дисфункции у больных с сохраненной ФВЛЖ.

Гипертония

Артериальная гипертензия является идеальной моделью для оценки изменений при различных видах деформаций, развивающиеся вслед за развитием концентрической геометрии ЛЖ (концентрическое ремоделирование и концентрическая гипертрофия ЛЖ). Это очень важный вопрос, потому что опыт использования стандартной эхокардиографии показал, что ухудшение фракционного сокращения стенок циркулярных волокон предшествует снижению фракции выброса левого желудочка. Speckle-tracking эхокардиография способствует дальнейшему пониманию того, что взаимодействие различных деформаций является гораздо более сложным процессом в этих условиях. В частности, оказывается, что продольная и радиальная деформация нарушаются, в то время как циркулярная деформация все еще нормальная, а кручение ЛЖ также находится в пределах нормы, как механическая компенсация для сохранения нормальной фракции выброса (ФВ). Эти данные дополнительно подтверждаются клиническими проявлениями у больных артериальной гипертензии с сохраненной ФВЛЖ, нарушенной продольной деформацией и увеличенным кручением ЛЖ, связанными с сывороточным уровнем ингибитора тканевой матричной металлопротеиназы 1 ― маркера миокардиального фиброза, который является основной детерминантой диастолической дисфункции ЛЖ. Эти данные позволяют предположить то, что нарушения обмена коллагена и миокардиальный фиброзный процесс могут привести к ранней сократительной дисфункции ЛЖ, когда ФВЛЖ еще нормальная, а функциональные нарушения ЛЖ, по-видимому, в основном влияют на диастолические свойства миокарда.

Диабет

Было показано, что у больных сахарным диабетом безсимптомных, с сохраненной ФВЛЖ, speckle-tracking эхокардиография имеет большой потенциал для обнаружения субклинической систолической дисфункции ЛЖ, которая маскируется изменениями продольной деформации. С этой точки зрения, speckle-tracking эхокардиография может предоставить полезную информацию о развитии субклинической дисфункции миокарда при диабете до явного появления диабетической кардиомиопатии. Эти данные подтверждают предыдущий опыт использования цветной визуализации скоростей в ткани, а также скорость деформации при допплеровском исследовании.

Ишемическая болезнь сердца

Choi  и др. сообщили, что низкие значения продольной деформации у бессимптомных пациентов без нарушений движения стенки, является сильным предиктором стабильной ишемической кардиопатии. Исследования пациентов с острым инфарктом миокарда обнаружили, что продольная деформация связана с пиковыми уровнями сердечного тропонина T33 и размера инфаркта ЛЖ. Более того, когда параметры измеряются сразу после реперфузионной терапии, продольная деформация является отличным предиктором ремоделирования ЛЖ и неблагоприятных эффектов, таких как застойная сердечная недостаточность и смерть. Кроме того, было показано, что продольная деформация коррелирует с глобальной и регионарной протяженностью (трансмуральностью) рубцовой ткани, что оценивается с помощью МРТ с контрастным усилением. Радиальное пиковое пороговое значение деформации ― 17,2% прогнозирует функциональное восстановление ЛЖ после реваскуляризации с точностью аналогичного порогового значения, равного 43% гиперусилению на МРТ. Пороговое значение ― 4,5% для региональной продольной деформации различается между сегментами с жизнеспособным миокардом и с трансмуральной рубцовой тканью на контрастном МРТ с чувствительностью 81,2% и специфичностью 81,6%. В недавних исследованиях, Voigt и др. использовали speckle-tracking эхокардиографию для сравнительного анализа постсистолического движения, определяемого как региональное миокардиальное движение ЛЖ после закрытия аортального клапана, и показали, что постсистолический индекс представляет собой важный количественный маркер для анализа ишемии миокарда (Рис. 3В). Тем не менее, данных исследований крупных популяций по-прежнему не хватает.

Пороки клапанов сердца

Speckle-tracking эхокардиографический анализ у пациентов с заболеваниями клапанов сердца был в основном выполнен для оценки функции ЛЖ со стрессовыми тестами (физические упражнения или фармакологическая проба). Lancellotti и др. показали, что у бессимптомных пациентов с дегенеративной митральной регургитацией, подвергающихся клапанной хирургии, ограниченное (индуцированное физической нагрузкой) восстановление продольной сократительной функции ЛЖ, и при оценке по speckle-tracking эхокардиографии глобальной продольной деформации прогнозируется дисфункция ЛЖ в послеоперационном периоде. У пациентов с аортальным стенозом или аортальной регургитацией, сразу после замены аортального клапана, существует значительное увеличение радиальной и циркулярной деформации, что наводит на мысль о том, как эти параметры деформации миокарда в значительной степени зависят от состояния нагрузки на ЛЖ.

Сердечная недостаточность

Было показано, что у пациентов с гипертензией и с сердечной недостаточностью, а также у пациентов с сердечной недостаточностью и нормальной ФВ, продольная деформация ЛЖ постепенно ухудшается (согласно Нью-Йоркской кардиологической ассоциации) от I класса, к классу IV, с дополнительным левожелудочковым радиальным и циркулярным систолическим ухудшением у пациентов в III и IV функциональных классов Нью-Йоркской кардиологической ассоциации. Что касается вращения и кручения ЛЖ, Park и др. сообщили, что систолическое скручивание, кручение и диастолическое раскручивание значительно повышено у пациентов с легкой диастолической дисфункцией (как два показательных случая на рисунке 4).

Рис. 4. Сравнительная картина измерений скручивания левого желудочка у диабетических пациентов с сохраненной фракцией выброса левого желудочка (справа) и здорового человека соответствующего возраста (слева). Желудочковая функция скручивания существенно увеличилась у пациентов с диабетом.
Рис. 4. Сравнительная картина измерений скручивания левого желудочка у диабетических пациентов с сохраненной фракцией выброса левого желудочка (справа) и здорового человека соответствующего возраста (слева). Желудочковая функция скручивания существенно увеличилась у пациентов с диабетом.

У пациентов с поздними стадиями диастолической дисфункции и увеличенным давлением наполнения, эти параметры нормализованы или снижены. Тем не менее, еще предстоит выяснить: увеличение показателей кручения ЛЖ является компенсаторным механизмом для уменьшения релаксации миокарда, или следствием редуцированного наполнения ЛЖ на ранней стадии диастолической дисфункции. Первое продольное исследование, проведенное у пациентов с сердечной недостаточностью и сниженной ФВ выявило, что глобальная циркулярная деформации может быть мощным предиктором сердечных атак. Другое исследование показало, что глобальная продольная деформация для прогнозирования исходов значительно превосходит показатели ФВ и оценочный индекс движения стенки.

Механическая диссинхрония

Кардиальная ресинхронизирующая терапия является эффективным средством для лечения пациентов с III и IV функциональным классом сердечной недостаточности (согласно Нью-Йоркской кардиальной ассоциации), у которых параметры фракции выброса левого желудочка ― 35% или меньше, с удлинением QRS, у которых, несмотря на оптимальную медикаментозную терапию, остаются клинические симптомы. Тем не менее, около 30% пациентов не имеют существенного преимущества при кардиальной ресинхронизирующей терапии, и в последние годы было сделано несколько попыток для выявления устойчивых к терапии пациентов до имплантации. Было изучено всё разнообразие эхокардиографических параметров потенциально пригодных для прогнозирования ответа на кардиальную ресинхронизирующую терапию. В недавнем многоцентровом исследовании, ни один из 12 обычных и допплеровских эхокардиографических параметров диссинхронии не был надежным прогностическим показателем ответа на ресинхронизирующую терапию. Однако, параметры деформации, как недавно было показано, имеют хорошую воспроизводимость и точность в дифференцировании здоровых пациентов от реагирующих на кардиальную ресинхронизирующую терапию. Кроме того, недавнее исследование показало, что изображение двухмерной скорости продольной деформации является перспективным потенциальным эхокардиографическим параметром для прогнозирования преимущества ресинхронизации сердца у пациентов с сердечной недостаточностью. Кроме того, показатель радиальной деформации при диссинхронии был успешно использован для прогнозирования ЛЖ функционального реагирования на кардиоресинхронизирующую терапию. Проспективных рандомизированных исследований с использованием speckle-tracking эхокардиографии для прогнозирования ответа на кардиальную ресинхронизирующую терапию по-прежнему не хватает.

Кардиомиопатии

У пациентов с необструктивными гипертрофическими кардиомиопатиями и сохраненной ФВ, speckle-tracking эхокардиография показала возможность выявления ранних стадий значительных нарушений всех компонентов деформации миокарда (продольной, циркулярной и радиальной деформации). Еще одно потенциальное клиническое применение speckle-tracking эхокардиографии для дифференциальной диагностики гипертрофической кардиомиопатии от гипертрофии ЛЖ у спортсменов. Оно основано на более низких значениях продольной деформации у пациентов с гипертрофической кардиомиопатией, у которых сохранена нормальная фракция выброса левого желудочка. Другие интересные результаты были недавно показаны и для других кардиомиопатий.

НОВЫЕ ОБЛАСТИ ПРИМЕНЕНИЯ

Пересадка сердца

Cameli и др. недавно опубликовали статью об изменениях параметров скручивания ЛЖ, кручения ЛЖ и частоты раскручивания у пациентов с пересаженным сердцем по сравнению с подобной возрастной контрольной группой людей, а также с пациентами, которые перенесли другие типы хирургических операций на сердце. Эти выводы дают информацию о потенциальной роли денервации сердца в детерминизме торсионной депрессии ЛЖ (Рис. 5).

Рис. 5. Сравнительная картина измерений скручивания левого желудочка в сопоставимой возрастной группе здорового человека (слева), пациентка после нетрансплантационной кардиохирургии (в центре), и после трансплантации сердца (HTX) у реципиента (справа). Желудочковая функция скручивания оказывается сильно редуцированной после трансплантации сердца
Рис. 5. Сравнительная картина измерений скручивания левого желудочка в сопоставимой возрастной группе здорового человека (слева), пациентка после нетрансплантационной кардиохирургии (в центре), и после трансплантации сердца (HTX) у реципиента (справа). Желудочковая функция скручивания оказывается сильно редуцированной после трансплантации сердца

Функция левого предсердия

Предварительные данные о миокардиальной деформации ЛП при speckle-tracking эхокардиографии, которая оценивалась путем измерения пика продольной деформации предсердий, предполагают, что и артериальная гипертензия и сахарный диабет оказывают существенное влияние на функцию ЛП, даже при отсутствие увеличения ЛП. Сосуществование обоих состояний, дополнительно ухудшает функциональные характеристики ЛП аддитивным образом (Рис. 6), а степень дисфункции ЛП напрямую связана с давлением наполнения ЛЖ.

Рис. 6. Анализ функции левого предсердия по speckle-tracking эхокардиографии. Картина измерения пиковой продольной деформации предсердия у здорового индивидуума (А), гипертоника (В), диабетика (С), диабетического пациента с гипертонической болезнью (D), с сохраненной фракцией выброса и отсутствием расширения левого предсердия. Обе патологии – и гипертония, и сахарный диабет оказывают существенное влияние на миокардиальную деформацию левого предсердия. Сосуществование двух патологий дополнительно ухудшает работу левого предсердия в аддитивной форме.

Идентификация субклинических нарушений во время проведения химиотерапии

В связи с применением новых противоопухолевых препаратов, многие пациенты могут иметь длительный срок выживаемости. По этой причине, лечение сопутствующих заболеваний стало проблемой для пациентов после проведенной химиотерапии по поводу рака. Учитывая то, что кардиотоксичность остается основным побочным эффектом противораковой терапии, раннее выявление повреждения сердечной ткани является очень важным, так как это способствует раннему назначению лечебных мероприятий. В отличие от изолированного анализа ФВ, новые speckle-tracking эхокардиографические параметры, как было показано, надежно выявляют доклинические нарушения как регионарной, так и глобальной функции миокарда на ранней стадии.

Ограничения

Для проведения speckle-tracking измерений требуются максимальные возможности аппаратуры для получения изображений, а также для установки правильной эндокардиальной границы, что зависит от наличия адекватных эхокардиографических проекций. Кроме того, учитывая тесную зависимость speckle-tracking эхокардиографии от каждого сердечного цикла при анализе миокардиальной деформации, не представляется возможным проводить измерения деформации у пациентов с несинусовым ритмом. Дополнительным ограничением техники является то, что результаты исследования критически зависят от устройства, на котором проводится анализ, при этом они не являются взаимозаменяемыми среди различных производителей.

ВЫВОДЫ

Speckle-tracking эхокардиография – новая сложная эхокардиографическая техника, которая работает со стандартным 2-мерным изображением, лишенная ограничений доплеровских технологий, обеспечивает всесторонний анализ глобальной и регионарной деформации миокарда во всех пространственных плоскостях. Кроме того, speckle-tracking эхокардиография позволяет оценить ЛЖ ротационную и торсионную динамику – параметры функции ЛЖ, которые до внедрения этой методики, анализировались исключительно с помощью МРТ.

В течение последних 3-х лет растет доказательная база, которая показывает хорошее технико-экономическое обоснование, воспроизводимость и точность speckle-tracking эхокардиографии при различном клиническом применении. Тем не менее, все еще не опубликовано проспективного клинического испытания для оценки этого метода в больших популяциях. Недавно разработанная трехмерная speckle-tracking техника, показала многообещающие предварительные результаты в оценке данных 3-мерных изображений. Это еще одно технологическое направление, которое, предположительно, обеспечит более объемный и подробный анализ сердечной динамики, в результате чего эхокардиография приблизится к самому продвинутому методу визуализации, при этом сохранив возможность ее выполнения у постели больного.

 


Новое сообщение