Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.
Механизмы резистентности микроорганизмов.
Механизмы резистентности к антибактериальным препаратам. Общие закономерности.
Основой терапевтического действия антибактериальных препаратов является подавление жизнедеятельности возбудителя инфекционной болезни в результате угнетения более или менее специфичного для микроорганизмов метаболического процесса. Угнетение происходит в результате связывания антибиотика с мишенью, в качестве которой может выступать либо фермент, либо структурная молекула микроорганизма.
Резистентность микроорганизмов к антибиотикам может быть природной и приобретенной.
Известны следующие биохимические механизмы устойчивости бактерий к антибиотикам:
- Истинная природная устойчивость характеризуется отсутствием у микроорганизмов мишени действия антибиотика или недоступности мишени вследствие первично низкой проницаемости или ферментативной инактивации. При наличии у бактерий природной устойчивости антибиотики клинически неэффективны. Природная резистентность является постоянным видовым признаком микроорганизмов и легко прогнозируется.
- Под приобретенной устойчивостью понимают свойство отдельных штаммов бактерий сохранять жизнеспособность при тех концентрациях антибиотиков, которые подавляют основную часть микробной популяции. Возможны ситуации, когда большая часть микробной популяции проявляет приобретенную устойчивость. Появление у бактерий приобретенной резистентности не обязательно сопровождается снижением клинической эффективности антибиотика. Формирование резистентности во всех случаях обусловлено генетически: приобретением новой генетической информации или изменением уровня экспрессии собственных генов.
- Модификация мишени действия.
- Инактивация антибиотика.
- Активное выведение антибиотика из микробной клетки (эффлюкс).
- Нарушение проницаемости внешних структур микробной клетки.
- Формирование метаболического "шунта".
Механизмы устойчивости к антибактериальным препаратам отдельных групп.
β-лактамные антибиотики
Ферментативная инактивация. Наиболее распространенным механизмом устойчивости микроорганизмов к β-лактамам является их ферментативная инактивация в результате гидролиза одной из связей β-лактамного кольца ферментами β-лактамазами. К настоящему времени описано более 200 ферментов, различающихся по следующим практически важным свойствам:
β-лактамазы встречаются у подавляющего большинства клинически значимых микроорганизмов, важным исключением являются микроорганизмы рода Streptococcus.
Все известные в настоящее время β-лактамазы делят на 4 молекулярных класса, в пределах которых ферменты характеризуются общностью свойств и выраженной гомологией. Предполагается, что β-лактамазы классов А, С и D эволюционировали из бактериальных пенициллиносвязывающих белков в почвенных экосистемах в результате селективного прессинга β-лактамных антибиотиков, продуцируемых некоторыми микроорганизмами. β-лактамазы перечисленных классов относятся к ферментам "серинового" типа (по аминокислоте, находящейся в активном центре фермента). Ферменты класса В относятся к металлоэнзимам, поскольку в качестве кофермента в них присутствует атом цинка, их происхождение менее ясно.
- Субстратный профиль (способность к преимущественному гидролизу тех или иных β-лактамов, например пенициллинов или цефалоспоринов, или тех и других в равной степени).
- Локализация кодирующих генов (плазмидная или хромосомная). Эта характеристика определяет эпидемиологию резистентности. При плазмидной локализации генов происходит быстрое внутри- и межвидовое распространение резистентности, при хромосомной - наблюдают распространение резистентного клона.
- Чувствительность к применяющимся в медицинской практике ингибиторам: клавулановой кислоте, сульбактаму и тазобактаму.
Ферменты | Характеристика |
---|---|
Плазмидные β-лактамазы класса А стафилококков | Гидролизуют природные и полусинтетические пенициллины кроме метициллина и оксациллина. Чувствительны к ингибиторам. |
Плазмидные β-лактамазы широкого спектра класса А грамотрицательных бактерий | Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I поколения. Чувствительны к ингибиторам. |
Плазмидные β-лактамазы расширенного спектра класса А грамотрицательных бактерий | Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I-IV поколения. Чувствительны к ингибиторам. |
Хромосомные β-лактамазы класса С грамотрицательных бактерий | Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I-III поколения. Не чувствительны к ингибиторам. |
Хромосомные β-лактамазы класса А грамотрицательных бактерий | Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I-II поколения. Чувствительны к ингибиторам. |
Хромосомные β-лактамазы класса В грамотрицательных бактерий | Эффективно гидролизуют практически все β-лактамы, включая карбапенемы. Не чувствительны к ингибиторам. |
Плазмидные β-лактамазы класса D грамотрицательных бактерий (преимущественно P.aeruginosa) | Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I-II поколения. Многие способны также гидролизовать цефалоспорины III поколения. Большинство не чувствительны к ингибиторам. |
В настоящее время наибольшее значение для клинической практики имеют плазмидные БЛРС грамотрицательных бактерий, поскольку они способны разрушать цефалоспорины III и, в меньшей степени, IV поколения. Рутинные методы оценки антибиотикочувствительности очень часто не выявляют этот механизм устойчивости. Чаще всего БЛРС встречаются у микроорганизмов рода Klebsiella, достаточно часто у E.coli и Proteus spp., реже у других грамотрицательных бактерий. В России в отдельных учреждениях частота распространенности этих ферментов среди клебсиелл достигает 90%.
При тяжелых нозокомиальных инфекциях, вызванных Enterobacter spp., Citrobacter spp. и некоторыми другими микроорганизмами, в процессе лечения цефалоспоринами III поколения примерно в 20% случаев формируется резистентность к этим антибиотикам, обусловленная гиперпродукцией хромосомных β-лактамаз класса С. В таких ситуациях эффективность сохраняют цефалоспорины IV поколения и карбапенемы. К неблагоприятным тенденциям, наблюдаемым в последнее время, следует отнести мобилизацию ферментов класса С на плазмиды, что создает реальные предпосылки для их широкого распространения.
Хромосомные β-лактамазы класса В, разрушающие карбапенемы, распространены среди редких видов микроорганизмов, например, S.maltophilia.
Снижение проницаемости внешних структур грамотрицательных бактерий. Внешняя мембрана грамотрицательных микроорганизмов является препятствием для проникновения β-лактамов внутрь клетки. Транспорт антибиотика через внешнюю мембрану к чувствительным мишеням осуществляется через воронкообразные белковые структуры, получившие название "порины" или "пориновые каналы". В результате мутаций возможна полная или частичная утрата поринов, приводящая к выраженному в различной степени снижению чувствительности к β-лактамам. Указанный механизм устойчивости встречается практически среди всех грамотрицательных бактерий, обычно в сочетании с другими механизмами.
Активное выведение β-лактамов из микробной клетки. Ранее считалось, что β-лактамы активно не выводятся из микробной клетки, однако в последние годы появились сообщения о наличии у P.aeruginosa транспортных систем, осуществляющих активное выведение ряда из них и, прежде всего, карбапенемов.
Модификация мишени действия. Мишенями действия β-лактамов являются ферменты - ПСБ, участвующие в синтезе клеточной стенки бактерий. В результате модификации у некоторых ПСБ уменьшается сродство к β-лактамам, что проявляется в повышении МПК этих препаратов и снижении клинической эффективности. Реальное клиническое значение имеет устойчивость среди стафилококков и пневмококков. Гены модифицированных ПСБ локализованы на хромосомах.
- Устойчивость стафилококков (S.aureus и КНС) обусловлена появлением у микроорганизмов дополнительного ПСБ (ПСБ2а).
- Маркером наличия ПСБ2а является устойчивость к метициллину или оксациллину.
- Независимо от результатов оценки in vitro при инфекциях, вызываемых MRSA, все β-лактамы следует считать клинически неэффективными и не использовать в терапии.
- Частота распространения MRSA в некоторых отделениях реанимации, онкологии и гематологии в России превышает 50-60%, что создает крайне серьезные проблемы для терапии.
- Устойчивость пневмококков обусловлена появлением в генах, кодирующих ПСБ, чужеродной ДНК, происхождение которой связывают с зеленящими стрептококками. При этом перекрестная устойчивость между отдельными β-лактамами неполная. Значительная часть штаммов, устойчивых к пенициллину, сохраняет чувствительность к цефалоспоринам III поколения и карбапенемам. К настоящему времени накоплено значительное количество данных, свидетельствующих о сохранении клинической эффективности β-лактамов при инфекциях ДП, вызываемых штаммами с промежуточным уровнем устойчивости, однако при инфекциях ЦНС (менингитах) эффективность этих антибиотиков явно снижается. Накопленные данные послужили основанием для пересмотра критериев чувствительности пневмококков к амоксициллину, обсуждается целесообразность изменения критериев чувствительности к пенициллину.
- Данные о частоте распространения в России пенициллинорезистентных пневмококков ограничены. В Москве, в период с 1998 г. по 2001 г., частота встречаемости штаммов пневмококков со сниженной чувствительностью к пенициллину колебалась в пределах 10-22%. При этом высокий уровень устойчивости отмечали не более чем у 1-2% штаммов.
- Среди грамотрицательных бактерий устойчивость, связанная с модификацией ПСБ встречается редко. Определенное значение этот механизм устойчивости имеет у H.influenzae и N.gonorrhoeae. Микроорганизмы, проявляют устойчивость не только к природным и полусинтетическим пенициллинам, но и к ингибиторозащищенным препаратам.
Аминогликозиды
Ферментативная инактивация. Основным механизмом устойчивости к аминогликозидам является их ферментативная инактивация путем модификации. Модифицированные молекулы аминогликозидов теряют способность связываться с рибосомами и подавлять биосинтез белка. Описаны три группы АМФ, осуществляющих инактивацию аминогликозидов, путем их связывания с различными молекулами: ААС - присоединяющие молекулу уксусной кислоты, АРН - присоединяющие молекулу фосфорной кислоты, нуклеотидил- или ANT - присоединяющие молекулу нуклеотида аденина.
Общее число описанных АМФ превышает 50, каждый из них характеризуется более или менее уникальным субстратным профилем. Гены ферментов локализуются, как правило, на плазмидах, что приводит к быстрому внутри- и межвидовому распространению устойчивости. Среди грамположительных и грамотрицательных бактерий распространены различные ферменты.
На практике среди грамотрицательных бактерий могут встречаться практически все комбинации устойчивости к отдельным аминогликозидам. Это связано с разнообразием субстратных профилей отдельных ферментов и возможностью наличия у бактерии одновременно нескольких генов АМФ.
Для России характерна высокая частота распространения устойчивости среди грамотрицательных бактерий к гентамицину и тобрамицину, что, вероятно, связано с необоснованно широким применением гентамицина. Частота устойчивости к нетилмицину, как правило, несколько ниже. Устойчивость к амикацину встречается достаточно редко.
Число АМФ, встречающихся у грамположительных бактерий, не столь велико. Определенное клиническое значение имеет распространение среди грамположительных бактерий бифункционального фермента ААС (6')-APH (2''), разрушающего большинство клинически значимых аминогликозидов, кроме стрептомицина и спектиномицина. Как следует из табл. 2, маркером наличия этого фермента является устойчивость к гентамицину, другие ферменты, распространенные среди грамположительных бактерий, не инактивируют этот антибиотик.
Снижение проницаемости внешних структур. Проникновение аминогликозидов через внешнюю и цитоплазматическую мембраны бактерий является сложным процессом. Низкая природная чувствительность к аминогликозидам некоторых микроорганизмов (например, B.cepacia) связана именно с недостаточной проницаемостью для АМП внешней мембраны этих микроорганизмов. Их мутации, приводящие к изменению структуры липополисахарида у E.coli и P.aeruginosa, могут обусловить значительное повышение устойчивости к аминогликозидам.
Природная устойчивость к аминогликозидам анаэробов объясняется тем, что транспорт этих антибиотиков через цитоплазматическую мембрану связан с системами переноса электронов, которые у анаэробов отсутствуют. По этой же причине факультативные анаэробы в условиях анаэробиоза, становятся значительно более устойчивыми к аминогликозидам, чем в аэробных условиях.
Практически важным фактом является природная устойчивость к аминогликозидам стрептококков и энтерококков, связанная с преимущественно анаэробным метаболизмом этих бактерий и, соответственно, невозможностью транспорта антибиотиков к чувствительным мишеням. При совместном воздействии на микробную клетку аминогликозидов и β-лактамов последние нарушают структуру цитоплазматической мембраны бактерий и облегчают транспорт аминогликозидов. В результате этого между β-лактамами и аминогликозидами проявляется выраженный синергизм.
Появляются данные о том, что аминогликозиды могут подвергаться активному выведению из микробной клетки.
Модификация мишени действия. Основной мишенью действия аминогликозидов является 30S субъединица бактериальной рибосомы, в некоторых случаях устойчивость может быть связана с ее модификацией. Распространение и клиническое значение устойчивости, связанной с модификацией мишени незначительно.
Ферменты | Устойчивость к антибиотикам |
---|---|
Грамположительные микроорганизмы | |
APH (3')-III |
|
ANT (4')-I |
|
ANT (6)-I |
|
ААС (6')-APH (2'') |
|
Грамотрицательные микроорганизмы | |
ANT (2'') |
|
ААС (2') |
|
AAC (3)-V |
|
AAC (3)-I |
|
AAC (6')-I |
|
APH (3')-I |
|
APH (3')-II |
|
APH (3')-VI |
|
Хинолоны/Фторхинолоны.
Модификация мишени действия. Ведущим механизмом устойчивости к хинолонам/фторхинолонам является модификация мишеней - двух бактериальных ферментов ДНК-гиразы и топоизомеразы IV, опосредующих конформационные изменения в молекуле бактериальной ДНК, необходимые для ее нормальной репликации. Каждый из ферментов состоит из четырех субъединиц. ДНК-гираза состоит из двух gyrА и двух gyrB субъединиц (соответствующие гены gyrА и gyrB). Топоизомераза IV - из субъединиц parC и parE (соответствующие гены parC и parE). Гены обоих ферментов локализованы на бактериальной хромосоме.
Поскольку топоизомеразы выполняют несколько различные функции, то для подавления жизнедеятельности микробной клетки достаточно ингибировать активность только одного фермента, активность второго может сохраняться. Эта особенность объясняет тот факт, что для всех хинолонов можно выделить первичную и вторичную мишень действия. Первичной мишенью является тот фермент, к которому данный хинолон проявляет наибольшее сродство. Хинолонов, которые бы проявляли абсолютно одинаковое сродство к обеим топоизомеразам не существует.
У грамотрицательных бактерий наибольшее сродство хинолоны проявляют к ДНК-гиразе, благодаря чему именно этот фермент является первичной мишенью их действия. У грамположительных бактерий для большинства хинолонов первичной мишенью действия является топоизомераза IV, но для спарфлоксацина и гатифлоксацина - ДНК-гираза. Моксифлоксацин и гемифлоксацин, вероятно, обладают приблизительно одинаковым сродством к обоим ферментам.
Основным механизмом устойчивости к хинолонам является изменение структуры топоизомераз в результате мутаций в соответствующих генах и аминокислотных замен в молекулах ферментов. Аминокислотные замены, в свою очередь, приводят к снижению сродства хинолонов к ферментам и повышению МПК препаратов. Частота возникновения мутаций, вероятно, мало зависит от воздействия хинолонов, однако, формирование устойчивых штаммов возможно лишь в результате селекции на фоне действия препаратов. В подавляющем большинстве случаев устойчивость формируется ступенеобразно. После возникновения и селекции мутаций в генах фермента, являющегося первичной мишенью действия хинолонов, МПК препаратов обычно повышается в 4-8 раз, а антибактериальный эффект проявляется за счет подавления активности фермента, являющегося вторичной мишенью. Если воздействие хинолонов на микроорганизм продолжается, то возможно возникновение и селекция мутаций во вторичной мишени и, как следствие, повышение МПК еще в 4-8 раз. У штаммов бактерий с высоким уровнем устойчивости обычно обнаруживают несколько мутаций в генах обеих топоизомераз.
Считается, что фторхинолоны, обладающие приблизительно одинаковым сродством к обеим топоизомеразам, в наименьшей степени способствуют селекции устойчивости. Это связано с тем, что для формирования устойчивого штамма мутации должны произойти одновременно в генах обоих ферментов, вероятность же двойных мутаций существенно ниже, чем одиночных.
Важно отметить, что, за некоторыми исключениями, мутации в генах топоизомераз приводят к приблизительно одинаковому снижению сродства к ферментам для всех хинолонов. Однако клиническое значение это приобретает лишь в том случае, если МПК становится выше фармакодинамически обоснованного критерия чувствительности. Так, например, при исходных величинах МПК левофлоксацина и моксифлоксацина в отношении штамма пневмококка 1,0 и 0,12 мг/л, соответственно, снижение сродства хинолонов к топоизомеразе IV в 8 раз приведет к увеличению МПК до 8,0 и 1,0 мг/л. По фармакодинамически обоснованным критериям мутантный штамм окажется устойчивым к левофлоксацину, но сохранит чувствительность к моксифлоксацину.
Активное выведение. В последние годы накапливаются данные о широком распространении среди грамположительных и грамотрицательных микроорганизмов устойчивости, связанной с активным выведением хинолонов. У штаммов с высоким уровнем устойчивости к фторхинолонам этот механизм часто сочетается с модификацией мишеней.
В России устойчивость к фторхинолонам (ципрофлоксацину и офлоксацину) является реальной проблемой при лечении нозокомиальных инфекций. Быстрее всего резистентность формируется у штаммов P.aeruginosa. Появляются данные о росте устойчивости к фторхинолонам среди пневмококков.
Макролиды, кетолиды и линкозамиды.
Модификация мишени действия. Основной мишенью действия макролидов, кетолидов и линкозамидов является 50S субъединица бактериальной рибосомы. Несмотря на различия в структуре, все эти антибиотики имеют общий участок связывания с рибосомой. У большинства бактерий устойчивость возникает в результате метилирования 23S-субъединицы рРНК. Известно около 20 генов (erm - erythromycin ribosome methylation), кодирующих фермент метилазу, они ассоциированы с транспозонами и могут локализоваться как на плазмидах, так и на хромосомах. Метилазы широко распространены среди многих аэробных и анаэробных грамположительных и грамотрицательных бактерий.
Метилирование мишени действия макролидов обусловливает высокий уровень устойчивости к этим антибиотикам (МПК > 32-64 мг/л).
Описано два варианта синтеза метилазы: конститутивный и индуцибельный. При конститутивном типе синтез фермента не зависит от внешних условий. Соответственно, бактерии проявляют устойчивость ко всем макролидам и линкозамидам. При индуцибельном типе синтеза фермента для его начала необходима индукция. Синтез стрептококковых метилаз индуцируется всеми макролидами и линкозамидами, соответственно микроорганизмы проявляют устойчивость ко всем перечисленным антибиотикам. В отличие от этого, синтез стафилококковых метилаз способен индуцировать только 14- и 15-членные макролиды, соответственно микроорганизмы проявляют устойчивость к перечисленным антибиотикам, но сохраняют чувствительность к 16-членным макролидам и линкозамидам. Таким образом, в клинической практике могут встречаться стафилококки устойчивые как ко всем макролидам и линкозамидам, так и только к 14- и 15-членным макролидам.
У ряда микроорганизмов (S. pneumoniae, Mycobacterium spp., Brachyspira hyodysenteriae, Propionibacterium spp., B. pertussis, H. influenzae, H. pylori) известен и другой механизм модификации мишени для макролидов и линкозамидов - в результате мутаций в V домене 23S рРНК снижается сродство к антибиотикам и формируется клинически значимая устойчивость. При этом механизме наблюдают перекрестную резистентность ко всем макролидам и линкозамидам. Снижение чувствительности к макролидам/линкозамидам штаммов S. pneumoniae, S. pyogenes и S. oralis вызывают также мутации в генах рибосомальных белков L4 и L22.
Активное выведение. Активное выведение макролидов и линкозамидов осуществляют несколько транспортных систем. Основное клиническое значение имеет система выведения, кодируемая mef-геном, распространенная среди S.pneumoniae, S.pyogenes и многих других грамположительных бактерий. Соответствующий белок-транспортер выводит 14- и 15-членные макролиды и обеспечивает невысокий уровень резистентности (МПК от 1 до 32 мг/л). Линкозамиды и 16-членые макролиды сохраняют активность.
Гены mef локализованы на хромосомах в составе конъюгативных элементов, что обеспечивает достаточно эффективное внутри- и межвидовое распространение. У стафилококков и энтерококков активное выведение макролидов, но не линкозамидов, осуществляют транспортные системы другого типа, кодируемые генами msr. Существуют также транспортные системы, осуществляющие избирательное выведение некоторых препаратов, например, линкомицина или олеандомицина.
Ферментативная инактивация. Ферменты, инактивирующие макролиды и линкозамиды, описаны среди грамположительных и грамотрицательных микроорганизмов. Некоторые из них обладают широким субстратным профилем (макролидфосфотрансферазы E.coli и Staphylococcus spp.), другие инактивируют только отдельные антибиотики (эритромицинэстеразы, распространенные среди семейства Enterobacteriaceae, линкомицинацетилтрансферазы стафилококков и энтерококков). Клиническое значение ферментов, инактивирующих макролидные антибиотики, невелико.
Роль отдельных механизмов резистентности к макролидам не равноценна. Накапливаются данные о том, что при инфекциях, вызываемых S. pneumoniae и S. pyogenes с устойчивостью, обусловленной активным выведением, некоторые макролиды могут сохранять клиническую эффективность.
В России устойчивость к макролидам и линкозамидам закономерно распространена среди метициллинорезистентных стафилококков. Среди метициллиночувствительных стафилококков частота устойчивости, как правило, не превышает 10%.
В Европе в последние годы наблюдается тенденция к росту устойчивости к макролидам среди S.pyogenes, S.pneumoniae, что связывают со значительным увеличением объема применения современных макролидов (азитромицина, кларитромицина, рокситромицина) в качестве препаратов выбора для лечения инфекций ДП легкой степени. Целесообразность такого расширения показаний вызывает дискуссии.
Надежных данных о многолетней динамике устойчивости S.pneumoniae и S.pyogenes к макролидам в России нет. В Москве в период с 1998 г. по 2001 г уровень устойчивости пневмококков к макролидам колеблется в пределах 8-12%, преобладающим механизмом является активное выведение. Устойчивость достигает 18%, во всех случаях она связана с активным выведением. Фиксируемый в последние годы уровень частоты устойчивости должен вызывать настороженность.
Тетрациклины.
Активное выведение. Этот механизм является наиболее распространенным среди грамотрицательных и грамположительных микроорганизмов. Детерминанты резистентности обычно локализованы на плазмидах, что обеспечивает их быстрое внутри- и межвидовое распространение. Часть генов и соответствующие белки (TetA - TetE) распространены среди грамотрицательных бактерий, другие (TetK, TetL) среди грамположительных.
Защита рибосомы. Известно семейство защитных белков, которые позволяют бактерии синтезировать белок, несмотря на связывание с рибосомой молекулы тетрациклина. Механизм подобной защиты неизвестен. Описано, по меньшей мере, 5 генов, кодирующих защитные белки, они распространены среди грамотрицательных и грамположительных бактерий и детерминируют устойчивость ко всем тетрациклинам.
Частота устойчивости к тетрациклинам среди клинически наиболее значимых микроорганизмов достаточно высока, что не позволяет рассматривать их как средства выбора для лечения большинства инфекций.
Гликопептиды
Модификация мишени действия. Механизм действия гликопептидов заключается в блокировании завершающей стадии синтеза пептидогликана путем связывания молекулы антибиотика с концевыми аминокислотами в боковой пептидной цепочке (D-аланин-D-аланин).
Механизм устойчивости к гликопептидам наиболее детально изучен у энтерококков, он связан с синтезом бактериями модифицированной боковой полипептидной цепи.
Известны три фенотипа устойчивости: VanA, VanB и VanC. Детерминанты устойчивости фенотипа VanA локализуются на плазмидах, а фенотипа VanB - в основном на хромосомах. Для фенотипа VanA характерен высокий уровень устойчивости к ванкомицину и тейкопланину, для VanB - вариабельная резистентность к ванкомицину и чувствительность к тейкопланину. Фенотип VanC характерен для E.gallinarum, E.casseliflavus и E.flavescens, проявляющих природно низкий уровень устойчивости к ванкомицину.
Устойчивость энтерококков к гликопептидам является серьезной проблемой в ОРИТ в США и Западной Европе. Чаще всего устойчивость отмечают у штаммов E.faecium, ее частота может достигать 15-20%. Достоверных данных о выделении VRE в России нет.
Сообщения о выделении единичных штаммов метициллинорезистентных и метициллиночувствительных S.aureus со сниженной чувствительностью к ванкомицину (GISA) начали появляться в различных странах с 1997г.. Для штаммов со сниженной чувствительностью характерно утолщение клеточной стенки, уменьшение аутолитической активности. Обсуждается возможность избыточной продукции мишеней действия гликопептидов. Снижение чувствительности к гликопептидам было описано ранее среди КНС.
На практике при выделении ванкомицинорезистентных энтерококков и стафилококков необходимо проявлять настороженность, тщательно проверять чистоту исследуемой культуры и точность ее идентификации. Так, необходимо иметь в виду, что некоторые грамположительные бактерии (Lactobacillus spp., Leuconostoc spp., Pediococcus spp.) обладают природной устойчивостью к гликопептидам.
Сульфаниламиды и ко-тримоксазол
Сульфаниламиды и триметоприм блокируют различные этапы одного метаболического пути бактерий - синтез фолиевой кислоты, благодаря чему между ними отмечается выраженный синергизм. Сульфаниламиды, являющиеся структурным аналогом ПАБК, являются конкурентными ингибиторами дигидроптеоратсинтетазы. Триметоприм подавляет активность дигидрофолатредуктазы.
Формирование метаболического шунта. Резистентность к триметоприму может являться результатом приобретения генов дигидрофолатредуктазы, нечувствительной (или малочувствительной) к ингибиции, а устойчивость к сульфаниламидам - генов дигидроптеоратсинтетазы. Известно несколько типов каждого из устойчивых ферментов, но их происхождение не совсем ясно.
Гены ферментов, устойчивых к ингибированию, часто находятся в составе подвижных генетических элементов (транспозонов) в ассоциации с генами, детерминирующими устойчивость к другим антибиотикам.
Модификация мишени действия. Устойчивость может также сформироваться в результате мутаций в генах указанных ферментов.
Хлорамфеникол.
Ферментативная инактивация (ацетилирование) является основным механизмом устойчивости к хлорамфениколу. Гены ферментов - хлорамфениколацетилтрасфераз, как правило, локализуются на плазмидах и входят в состав транспозонов в ассоциации с генами устойчивости к другим АМП.
Полимиксины.
Полимиксины оказывают бактерицидное действие на грамотрицательные бактерии, нарушая целостность цитоплазматической мембраны, действуя подобно поверхностно активным веществам. Приобретенная устойчивость отмечается редко.
Нитрофураны.
Механизм действия нитрофуранов изучен недостаточно полно. Считается, что приобретенная устойчивость к этим препаратам встречается крайне редко, о ее механизмах можно судить лишь предположительно.
Нитроимидазолы.
Нитроимидазолы активируются в микробной клетке ферментом нитроредуктазой, возникающие при этом свободные радикалы, повреждают ДНК бактерий. Устойчивость у подавляющего большинства анаэробных бактерий отмечается крайне редко и не имеет практического значения.
Реальные проблемы возникают при развитии устойчивости у H.pylori, обусловленной инактивацией нитроредуктазы в результате мутаций в соответствующих генах.
Множественная устойчивость, связанная со снижением проницаемости.
Снижение проницаемости внешних структур бактериальной клетки является наименее специфичным механизмом устойчивости и, обычно, приводит к формированию устойчивости одновременно к нескольким группам антибиотиков.
Чаще всего причиной этого явления становится полная или частичная утрата пориновых белков. Кроме этого, относительно хорошо изучена система MAR (multiple antibiotic resistance - множественная устойчивость к антибиотикам). На фоне применения тетрациклинов или хлорамфеникола формируется устойчивость не только к этим антибиотикам, но и к β-лактамам и хинолонам. Активация MAR системы приводит к одновременному снижению количества одного из пориновых белков (OmpF) и повышению активности одной из систем активного выведения.
Снижение проницаемости за счет утраты или снижения количества пориновых белков встречается в ассоциации с продукцией β-лактамаз расширенного спектра. Утрата одного из пориновых белков (D2) P.aeruginosa приводит к избирательному снижению чувствительности микроорганизма к имипенему.
Заключение.
В заключение целесообразно коротко суммировать данные о наиболее распространенных механизмах резистентности среди основных клинически значимых микроорганизмов.
Возбудители внебольничных инфекций
Возбудители нозокомиальных инфекций
- Staphylococcus spp. - устойчивость к природным и полусинтетическим пенициллинам, связанная с продукцией β-лактамаз.
- S.pneumoniae - устойчивость различного уровня к пенициллину (часть штаммов устойчива к цефалоспоринам III поколения), связанная с модификацией ПСБ; высокая частота ассоциированной устойчивости к макролидам, тетрациклинам, ко-тримоксазолу.
- H.influenzae, M.catarrhalis - устойчивость к полусинтетическим пенициллинам, связанная с продукцией β-лактамаз.
- N.gonorrhoeae - устойчивость к пенициллинам, связанная с продукцией β-лактамаз, устойчивость к тетрациклинам, фторхинолонам.
- Shigella spp. - устойчивость к ампициллину, тетрациклинам, ко-тримоксазолу, хлорамфениколу.
- Salmonella spp. - устойчивость к ампициллину, ко-тримоксазолу, хлорамфениколу. Появление устойчивости к цефалоспоринам III поколения и фторхинолонам.
- E.coli - при внебольничных инфекциях МВП - возможна устойчивость к ампициллину, ко-тримоксазолу, гентамицину.
- Enterobacteriaceae - продукция БЛРС (чаще всего среди Klebsiella spp.), обуславливающая клиническую неэффективность всех цефалоспоринов; очень высокая частота ассоциированной устойчивости к гентамицину/тобрамицину; в некоторых учреждениях тенденция к росту ассоциированной резистентности к фторхинолонам, амикацину.
- Pseudomonas spp., Acinetobacter spp., S.maltophilia - ассоциированная устойчивость к цефалоспоринам, аминогликозидам, фторхинолонам, иногда карбапенемам.
- Enterococcus spp. - ассоциация устойчивости к пенициллинам, высокого уровня устойчивости к аминогликозидам, фторхинолонам и гликопептидам.
- Staphylococcus spp. (метициллинорезистентные) - ассоциированная устойчивость к макролидам, аминогликозидам, тетрациклинам, ко-тримоксазолу, фторхинолонам.
Механизмы резистентности к противотуберкулезным препаратам.
Особенности патогенеза туберкулеза и биологии возбудителя (медленная пролиферация, длительное персистирование в организме и последующая реактивация инфекции) накладывают определенные отпечатки на формирование устойчивости у микобактерий. Из-за крайне ограниченных возможностей генетического обмена между микобактериями формирование у них резистентности практически всегда связано с накоплением хромосомных мутаций в генах, кодирующих мишени действия препаратов.
Терминология антибиотикоустойчивости микобактерий отличается некоторыми особенностями, что связано с чисто практическими задачами. Согласно рекомендациям ВОЗ, в зависимости от того, получал ли пациент специфическую противотуберкулезную терапию до выделения возбудителя, различают первичную и приобретенную устойчивость. К микроорганизмам с первичной устойчивостью относят штаммы, выделенные от пациентов, не получавших специфическую терапию. Если устойчивый штамм выделен у пациента на фоне противотуберкулезной терапии, то устойчивость расценивают как приобретенную. В тех случаях, когда невозможно достоверно установить факт применения противотуберкулезных препаратов, используют термин "начальная" устойчивость. К множественноустойчивым микобактериям относят микроорганизмы, устойчивые, как минимум, к рифампицину и изониазиду.
Риск развития мутаций, опосредующих устойчивость, составляет: 3,32 x 10-9 на одно деление клетки для рифампицина; 2,56 x 10-8 для изониазида; 2,29 x 10-8 для стрептомицина; 1,0 x 10-7 для этамбутола. Риск одновременного развития устойчивости к двум препаратам меньше чем 10-15. Вероятность такого события крайне низка, особенно учитывая тот факт, что обсемененность микобактериями очага инфекции обычно не превышает 108 КОЕ. Учитывая приведенные факты, формирование у микобактерий множественной устойчивости связывают с нарушением режимов антибактериальной терапии, хотя прямых доказательств этому нет.
С точки зрения природной чувствительности к АМП, микобактерии представляют собой не совсем однородную группу. Так, "атипичные" микобактерии M. avium-intracellulare устойчивы к изониазиду и пиразинамиду, микроорганизмы группы M.chelonae устойчивы к изониазиду, пиразинамиду, рифампицину, стрептомицину и этамбутолу. Но с другой стороны, перечисленные микроорганизмы высокочувствительны к макролидам - азитромицину и кларитромицину, эти АМП составляют основу терапии соответствующих инфекций. Микроорганизмы группы M.chelonae также чувствительны к тетрациклинам и сульфаниламидам.
Рифамицины
Мишенью действия рифамицинов является фермент ДНК-зависимая РНК-полимераза (ген rpoB). Устойчивость к рифамицинам (рифампицину, рифабутину и др.) в подавляющем большинстве случаев (более 95% штаммов) связана с мутациями в сравнительно небольшом фрагменте β-субъединицы этого фермента. Размер указанного фрагмента составляет 81 пару оснований (27 кодонов). Мутации в отдельных кодонах различаются по своему значению. Так, при мутациях в кодонах 526 и 531, обнаружива-ют высокий уровень резистентности к ри-фампицину (МПК < 32,0 мкг/мл) и другим рифамицинам. Мутации в кодонах 511, 516, 518 и 522 сопровождаются низким уровнем устойчивости к рифампицину и рифапентину, при сохранении чувствительности к рифабутину. В незначительной части случаев резистентность к рифамицинам связана с мутациями в других участках гена rpoB.
Изониазид
Изониазид по существу представляет собой пролекарство. Для проявления антибактериальной активности молекула препарата должна быть активирована внутри микробной клетки, однако химическая структура активной формы изониазида окончательно не выявлена. Активация происходит под действием фермента каталазы-пероксидазы (ген katG). Мутации в этом гене (обычно в положении 315), приводящие к снижению активности фермента на 50%, обнаруживают приблизительно у половины изониазидорезистентных штаммов микобактерий.
Вторым механизмом устойчивости микобактерий к изониазиду является гиперпродукция мишеней действия активных форм препарата. К указанным мишеням относятся белки, участвующие в транспорте предшест-венников миколевой кислоты и ее биосинтезе: ацилированный белок-носитель (ген acpM), синтетаза (ген kasA) и редуктаза (ген inhA) белка-носителя. Миколевая кислота является основным компонентом клеточной стенки микобактерий. Мутации обычно выявляются в промоторных областях перечисленных генов. Уровень устойчивости, связанной с гиперпродукцией мишеней, как правило, ниже, чем при мутациях в генах каталазы-пероксидазы.
Пиразинамид
Пиразинамид, как и изониазид, является пролекарством. После пассивной диффузии внутрь микробной клетки пиразинамид превращается в пиразиноивую кислоту под действием фермента пиразинамидазы (ген pncA). Пиразиноивая кислота, в свою очередь, ингибирует ферменты биосинтеза жирных кислот. У 70-90% штаммов микобактерий, устойчивых к пиразинамиду, в структурных или промоторных областях пиразинамидазы обнаруживают мутации. Здесь же необходимо отметить, что M.bovis обладает природной устойчивостью к пиразинамиду, благодаря специфической точечной мутации в 169 кодоне.
Стрептомицин
В отличие от большинства других микроорганизмов, устойчивость микобактерий к аминогликозидам не связана с продукцией АМФ. У штаммов микобактерий, устойчивых к стрептомицину, обнаруживаются два вида мутаций, приводящих к модификации участка связывания антибиотика с малой субъединицей (23S) рибосомы: мутации в генах, кодирующих 16S рРНК (rrs), и генах, кодирующих S23 рибосомальный протеин (rspL).
Этамбутол
Мишенью действия этамбутола является белок embB (арабинозилотрансфераза), участвующий в биосинтезе компонента клеточной стенки микобактерий - арабиногалактана. Устойчивость к этамбутолу, в подавляющем большинстве случаев, связана с точечной мутацией в 306 кодоне.
Фторхинолоны
Механизмы устойчивости микобактерий к фторхинолонам не отличаются от механизмов, выявляемых у других микроорганизмов, и связаны с мутациями в генах ДНК-гиразы.
Макролиды
Устойчивость M. avium-intracellulare к макролидам определяется модификацией мишени их действия. У устойчивых штаммов обнаруживают замену аденина в 2058 поло-жении молекулы 23S РНК.
В заключение необходимо отметить, что механизмы резистентности части микобактерий к противотуберкулезным препаратам не установлены.
Механизмы резистентности к противогрибковым препаратам.
Повышение роли грибов в этиологии госпитальных и некоторых внебольничных инфекций привело к внедрению в клиническую практику значительного числа новых препаратов и их широкому применению, это, в свою очередь, неизбежно привело к формированию устойчивости. Поскольку грибы, в отличие от бактерий, являются эукариотическими организмами, то для лечения вызываемых ими инфекций необходимо использовать препараты с принципиально другими мишенями и механизмами действия. Фактором, существенно затрудняющим изучение устойчивости грибов, является недостаточная стандартизация методов оценки их чувствительности к противогрибковым препаратам и трудности в обосновании критериев чувствительности.
Азолы
Механизм действия азолов (миконазол, кетоконазол, флуконазол, итраконазол и др.) заключается в ингибиции биосинтеза эргостерола - вещества, участвующего в поддержании структурной целостности мембраны клетки гриба. Основной мишенью действия азолов являются ферменты (14α-деметилазы), осуществляющие деметилирование предшественников эргостерола. Для грибов рода Candida было показано, что устойчивость к азолам может быть связана с точечными мутациями, приводящими к аминокислотным заменам. В результате таких мутаций связывание ферментов с азолами резко снижается, но связывание с естественными субстратами не страдает. Устойчивость может являться результатом гиперпродукции мишеней действия азолов. У грибов рода Candida и др. известно несколько транспортных систем, осуществляющих активное выведение азолов, что также приводит к формированию устойчивости этих грибов. Активация систем выведения часто ассоциируется с изменениями в структуре мембраны, приводящими к снижению поступления азолов внутрь клетки гриба.
Аллиламины
Механизм действия аллиламинов (тербинафин), так же как и азолов, связан с ингибицией биосинтеза эргостерола. Однако, эта ингибиция происходит на существенно более ранних стадиях биосинтеза. В настоящее время зарегистрированы случаи неудач лечения тербинафином и описаны устойчивые штаммы. Генетические и биохимические механизмы устойчивости к аллиламинам изучены недостаточно, однако показано, что препараты могут активно выводиться из клеток грибов посредством известных транспортных систем.
Полиены
Механизм противогрибковой активности полиенов (нистатин, амфотерицин В и др.) заключается в физико-химическом взаимодействии этих препаратов со стеролами цитоплазматической мембраны грибов. В результате такого взаимодействия в мембране образуются поры, через которые происходит потеря цитоплазматического содержимого, приводящая к гибели гриба. Поскольку мишенью действия полиенов являются структурные элементы клетки грибов, а не ферменты, то формирование устойчивости может быть результатом сложных генетических процессов, приводящих к изменению биосинтеза компонентов мембраны. Вероятность таких событий относительно невелика, с чем и связана низкая частота устойчивости к полиенам. Биохимия и генетика устойчивости к полиенам изучена недостаточно, но имеющиеся данные в целом поддерживают гипотезу о снижении содержания эргостерола в цитоплазматической мембране и о повышении содержания его аналогов в устойчивых штаммах.
Оценка чувствительности к противогрибковым препаратам
В связи с появлением случаев неэффективности противогрибковой терапии возникла реальная практическая потребность в определении чувствительности грибов к соответствующим препаратам. К сожалению, возможности для решения этой задачи весьма ограничены. В качестве стандартного рассматривают метод серийных разведений на среде RPMI 1640, воспроизводимые результаты обеспечивают ряд других методов и некоторые коммерческие тест-системы. Детальное рассмотрение методов оценки чувствительности грибов выходит за рамки данной главы.
Принципиальными моментами являются:
Следует отметить, что использование нестандартизованных ("домашних" или коммерческих) методов оценки чувствительности грибов может привести к получению заведомо ложных результатов и серьезным ошибкам при выборе препаратов для лечения.
- фузионного метода для оценки чувствительности грибов;
- отсутствие критериев интерпретации результатов исследований для большинства комбинаций гриб - препарат;
- клинически обоснованные критерии разработаны только для оценки чувствительности грибов рода Candida к азолам и некоторым другим антимикотикам.
Механизмы резистентности к противовирусным препаратам.
Противовирусная терапия по своей эффективности значительно уступает антибактериальной. В основном это связано с трудностями в разработке специфических препаратов из-за крайне тесной интеграции вирусного генома и генома хозяина (человека). До настоящего времени лишь крайне ограниченное число вирусных инфекций в той или иной степени поддается эффективной этиотропной терапии: герпетические и ЦМВ-инфекции, ВИЧ, некоторые вирусные гепатиты. Соответственно основное клиническое значение имеет устойчивость к наиболее распространенным противовирусным препаратам - противогерпетическим и антиретровирусным. Основными механизмами устойчивости является формирование и селекция мутаций в генах, кодирующих ферменты, участвующие в метаболизме препаратов, или являющиеся непосредственными мишенями действия препаратов.
Типичным для противовирусных препаратов является формирование резистентности в процессе длительной терапии.
Противогерпетические препараты
Многие противогерпетические препараты проявляют активность в отношении ЦМВ и других вирусов. Ацикловир - основной противогерпетический препарат - является аномальным аналогом нуклеозида гуанозина. Внутри инфицированной вирусом клетки ацикловир подвергается фосфорилированию под действием вирусной тимидинкиназы и клеточных фосфорилаз. Ацикловира трифосфат включается в растущие молекулы ДНК и блокирует их синтез, кроме этого, он является конкурентным ингибитором вирусной ДНК-полимеразы. Устойчивость к ацикловиру формируется в результате мутаций в вирусной тимидинкиназе. Известны два типа мутаций: приводящие к дефициту тимидинкиназы и приводящие к снижению сродства фермента к ацикловиру. Штаммы вирусов герпеса, дефицитные по тимидинкиназе, проявляют значительно сниженную вирулентность и вызывают инфекции в основном у людей с иммунодефицитом.
Мутации в вирусной ДНК-полимеразе приводят лишь к умеренному снижению чувствительности вирусов герпеса к ацикловиру, клиническое значение такого снижения чувствительности окончательно не установлено.
Кроме ацикловира в клинической практике используют валацикловир, а также фамцикловир и ганцикловир. Механизмы резистентности у них такие же, как и у ацикловира.
Антиретровирусные препараты
Среди антиретровирусных препаратов выделяют ингибиторы обратной транскриптазы и ингибиторы протеазы. Обратная транскриптаза катализирует синтез ДНК с матрицы вирусной РНК. Вирусная протеаза осуществляет расщепление функционально неактивных полипротеинов и получение отдельных протеинов, необходимых для сборки вирионов.
Исторически первым ингибитором обратной транскриптазы был аналог тимидина зидовудин (азидотимидин). К настоящему времени в РФ зарегистрированы и разрешены к медицинскому применению другие аналоги нуклеозидов: диданозин, зальцитабин, ставудин и др. Внутри клетки под действием фосфорилаз аналоги нуклеозидов превращаются в трифосфаты, являющиеся конкурентными ингибиторами обратной транскриптазы, кроме этого, включаясь в цепь вирусной ДНК, препараты блокируют ее дальнейший синтез.
Резистентность ВИЧ к аналогам нуклеозидов формируется достаточно быстро, в этой связи их используют в комбинации с препаратами других классов. К настоящему времени описано большое количество мутаций в генах обратной транскриптазы, приводящих к формированию устойчивости. Некоторые из этих мутаций опосредуют избирательную резистентность к зидовудину или другим аналогам нуклеозидов, другие вызывают перекрестную устойчивость ко всем известным препаратам.
Подавлять активность обратной транскриптазы могут также соединения, отличающиеся по химической структуре от нуклеозидов (невирапин). Они связываются с ферментом в участке, отличном от каталитического центра. Несмотря на то, что связывание ингибитора и фермента происходит вне активного центра, этот процесс приводит к подавлению каталитической активности. Описано около 10 различных мутаций в генах обратной транскриптазы, приводящих к формированию резистентности.
Устойчивость к ингибиторам протеазы (ампренавир, индинавир, ритонавир, саквинавир) также формируется достаточно быстро в результате мутаций в генах фермента, поэтому для монотерапии их не применяют. Известны мутации, опосредующие устойчивость к отдельным ингибиторам, а также вызывающие перекрестную устойчивость к нескольким препаратам.
В заключение необходимо еще раз подчеркнуть, что специфическая терапия ВИЧ-инфекции во всех случаях должна быть комбинированной и соответствовать разработанным строгим схемам, что позволяет предотвратить селекцию резистентности.
Механизмы резистентности к антипротозойным препаратам.
Простейшие (Protozoa) представляют собой обширную и разнообразную по свойствам группу эукариотических микроорганизмов. Некоторые метаболические пути простейших сходны с таковыми у бактерий, этим объясняется наличие антипротозойной активности у таких антибактериальных препаратов, как нитроимидазолы и тетрациклины. В данной главе рассматриваются механизмы устойчивости простейших к наиболее известным ЛС.
Противомалярийные препараты
Появление резистентности к противомалярийным препаратам во многом связано с их массовым применением в рамках кампаний по глобальной ликвидации малярии, проводимых под эгидой ВОЗ. Наибольшее значение имеет распространение устойчивости среди P.falciparum и, в меньшей степени, среди P.vivax к дешевым препаратам массового применения: хлорохину и пириметамину/сульфадоксину.
Частота устойчивости к хлорохину варьирует в различных географических регионах даже в пределах одной страны. Так, в Кении резистентность колеблется от 18% до 70%.
Резистентность к хлорохину связана с двумя процессами: снижением транспорта препарата внутрь плазмодия и его активным выведением. Наиболее вероятным геном, ответственным за активное выведение хлорохина является pfmdr (P.falciparum multidrug resistance) - гомолог гена множественной лекарственной устойчивости млекопитающих. У устойчивых штаммов выявляется либо увеличение копийности указанного гена, либо точечные мутации. Увеличение числа копий гена pfmdr вероятно также опосредует устойчивость и к мефлохину. Генетические исследования свидетельствуют, что в формировании резистентности участвуют и другие неустановленные механизмы.
Резистентность к ингибиторам фолиевой кислоты формируется в результате мутаций в генах ферментов биосинтеза фолиевой кислоты: дигидроптероатсинтетазы и дигидрофолатредуктазы. С точечными мутациями в этих генах, а также в генах тимидилат синтетазы связана устойчивость к препарату группы бигуанидов - прогуанилу.
Активное выведение, опосредуемое продуктом гена pfmdr, вероятно, является причиной феномена множественной устойчивости P.falciparum к противомалярийным препаратам.
Нитроимидазолы
Ряд простейших, прежде всего T.vaginalis, G.lamblia и E.histolytica, характеризуются анаэробным метаболизмом, во многом сходным с метаболизмом анаэробных бактерий. Чувствительность этих простейших к нитроимидазолам (прежде всего к метронидазолу) объясняется способностью микроорганизмов к восстановлению нитрогруппы препаратов и, таким образом, трансформации их в активную форму, повреждающую ДНК. Донором электронов, участвующим в активации нитроимидазолов, является ферредоксин. Устойчивость анаэробных простейших к нитроимидазолам связана со снижением уровня экспрессии ферредоксина и, следовательно, со снижением способности микроорганизмов активировать препараты.